Báo cáo khoa học: "A Comparative Study of Hypothesis Alignment and its Improvement for Machine Translation System Combination"

Recently confusion network decoding shows the best performance in combining outputs from multiple machine translation (MT) systems. However, overcoming different word orders presented in multiple MT systems during hypothesis alignment still remains the biggest challenge to confusion network-based MT system combination. In this paper, we compare four commonly used word alignment methods, namely GIZA++, TER, CLA and IHMM, for hypothesis alignment. Then we propose a method to build the confusion network from intersection word alignment, which utilizes both direct and inverse word alignment between the backbone and hypothesis to improve the reliability of hypothesis alignment. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.