Báo cáo khoa học: "Learning Context-Dependent Mappings from Sentences to Logical Form"

We consider the problem of learning context-dependent mappings from sentences to logical form. The training examples are sequences of sentences annotated with lambda-calculus meaning representations. We develop an algorithm that maintains explicit, lambda-calculus representations of salient discourse entities and uses a context-dependent analysis pipeline to recover logical forms. The method uses a hidden-variable variant of the perception algorithm to learn a linear model used to select the best analysis. Experiments on context-dependent utterances from the ATIS corpus show that the method recovers fully correct logical forms with accuracy

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
463    18    1    24-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.