Báo cáo khoa học: "Vector-based Models of Semantic Composition"

This paper proposes a framework for representing the meaning of phrases and sentences in vector space. Central to our approach is vector composition which we operationalize in terms of additive and multiplicative functions. Under this framework, we introduce a wide range of composition models which we evaluate empirically on a sentence similarity task. Experimental results demonstrate that the multiplicative models are superior to the additive alternatives when compared against human judgments. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.