Báo cáo khoa học: "Exploiting Feature Hierarchy for Transfer Learning in Named Entity Recognition"

We present a novel hierarchical prior structure for supervised transfer learning in named entity recognition, motivated by the common structure of feature spaces for this task across natural language data sets. The problem of transfer learning, where information gained in one learning task is used to improve performance in another related task, is an important new area of research. In the subproblem of domain adaptation, a model trained over a source domain is generalized to perform well on a related target domain, where the two domains’ data are distributed similarly, but not identically. .

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.