Báo cáo khoa học: "Learning Effective Multimodal Dialogue Strategies from Wizard-of-Oz data: Bootstrapping and Evaluation"

We address two problems in the field of automatic optimization of dialogue strategies: learning effective dialogue strategies when no initial data or system exists, and evaluating the result with real users. We use Reinforcement Learning (RL) to learn multimodal dialogue strategies by interaction with a simulated environment which is “bootstrapped” from small amounts of Wizard-of-Oz (WOZ) data.

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.