Frequency counts from very large corpora, such as the Web 1T dataset, have recently become available for language modeling. Omission of low frequency n-gram counts is a practical necessity for datasets of this size. Naive implementations of standard smoothing methods do not realize the full potential of such large datasets with missing counts. In this paper I present a new smoothing algorithm that combines the Dirichlet prior form of (Mackay and Peto, 1995) with the modified back-off estimates of (Kneser and Ney, 1995) that leads to a 31% perplexity reduction on the Brown corpus compared to a baseline implementation.