In this paper, we propose a linguistically annotated reordering model for BTG-based statistical machine translation. The model incorporates linguistic knowledge to predict orders for both syntactic and non-syntactic phrases. The linguistic knowledge is automatically learned from source-side parse trees through an annotation algorithm. We empirically demonstrate that the proposed model leads to a significant improvement of in the BLEU score over the baseline reordering model on the NIST MT-05 Chinese-to-English translation task. .