Báo cáo khoa học: "Predicting Barge-in Utterance Errors by using Implicitly Supervised ASR Accuracy and Barge-in Rate per User"

Modeling of individual users is a promising way of improving the performance of spoken dialogue systems deployed for the general public and utilized repeatedly. We define “implicitly-supervised” ASR accuracy per user on the basis of responses following the system’s explicit confirmations. We combine the estimated ASR accuracy with the user’s barge-in rate, which represents how well the user is accustomed to using the system, to predict interpretation errors in barge-in utterances. Experimental results showed that the estimated ASR accuracy improved prediction performance. Since this ASR accuracy and the barge-in rate are obtainable at runtime, they improve prediction performance without.

Bấm vào đây để xem trước nội dung
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.