Báo cáo khoa học: "Transfer Learning, Feature Selection and Word Sense Disambguation"

We propose a novel approach for improving Feature Selection for Word Sense Disambiguation by incorporating a feature relevance prior for each word indicating which features are more likely to be selected. We use transfer of knowledge from similar words to learn this prior over the features, which permits us to learn higher accuracy models, particularly for the rarer word senses. Results on the O NTO N OTES verb data show significant improvement over the baseline feature selection algorithm and results that are comparable to or better than other state-of-the-art methods. in this case). .

Bấm vào đây để xem trước nội dung
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.