We present a novel approach for discovering word categories, sets of words sharing a significant aspect of their meaning. We utilize meta-patterns of highfrequency words and content words in order to discover pattern candidates. Symmetric patterns are then identified using graph-based measures, and word categories are created based on graph clique sets. Our method is the first pattern-based method that requires no corpus annotation or manually provided seed patterns or words. We evaluate our algorithm on very large corpora in two languages, using both human judgments and WordNetbased evaluation. .