Hidden Markov models (HMMs) are powerful statistical models that have found successful applications in Information Extraction (IE). In current approaches to applying HMMs to IE, an HMM is used to model text at the document level. This modelling might cause undesired redundancy in extraction in the sense that more than one filler is identified and extracted. We propose to use HMMs to model text at the segment level, in which the extraction process consists of two steps: a segment retrieval step followed by an extraction step. .