Báo cáo khoa học: "Annealing Structural Bias in Multilingual Weighted Grammar Induction∗"

We first show how a structural locality bias can improve the accuracy of state-of-the-art dependency grammar induction models trained by EM from unannotated examples (Klein and Manning, 2004). Next, by annealing the free parameter that controls this bias, we achieve further improvements. We then describe an alternative kind of structural bias, toward “broken” hypotheses consisting of partial structures over segmented sentences, and show a similar pattern of improvement. We relate this approach to contrastive estimation (Smith and Eisner, 2005a), apply the latter to grammar induction in six languages, and show that our new approach improves accuracy by 1–17% (absolute).

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.