Báo cáo khoa học: "An All-Subtrees Approach to Unsupervised Parsing"

We investigate generalizations of the allsubtrees "DOP" approach to unsupervised parsing. Unsupervised DOP models assign all possible binary trees to a set of sentences and next use (a large random subset of) all subtrees from these binary trees to compute the most probable parse trees. We will test both a relative frequency estimator for unsupervised DOP and a maximum likelihood estimator which is known to be statistically consistent. We report state-ofthe-art results on English (WSJ), German (NEGRA) and Chinese (CTB) data. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.