Báo cáo khoa học: "Prototype-Driven Grammar Induction"

We investigate prototype-driven learning for primarily unsupervised grammar induction. Prior knowledge is specified declaratively, by providing a few canonical examples of each target phrase type. This sparse prototype information is then propagated across a corpus using distributional similarity features, which augment an otherwise standard PCFG model. We show that distributional features are effective at distinguishing bracket labels, but not determining bracket locations. To improve the quality of the induced trees, we combine our PCFG induction with the CCM model of Klein and Manning (2002)

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.