Báo cáo khoa học: "Exploiting Non-local Features for Spoken Language Understanding"

In this paper, we exploit non-local features as an estimate of long-distance dependencies to improve performance on the statistical spoken language understanding (SLU) problem. The statistical natural language parsers trained on text perform unreliably to encode non-local information on spoken language. An alternative method we propose is to use trigger pairs that are automatically extracted by a feature induction algorithm. We describe a light version of the inducer in which a simple modification is efficient and successful. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.