In this paper we present word sense disambiguation (WSD) experiments on ten highly polysemous verbs in Chinese, where significant performance improvements are achieved using rich linguistic features. Our system performs significantly better, and in some cases substantially better, than the baseline on all ten verbs. Our results also demonstrate that features extracted from the output of an automatic Chinese semantic role labeling system in general benefited the WSD system, even though the amount of improvement was not consistent across the verbs. .