Báo cáo khoa học: "Semantic Discourse Segmentation and Labeling for Route Instructions"

In order to build a simulated robot that accepts instructions in unconstrained natural language, a corpus of 427 route instructions was collected from human subjects in the office navigation domain. The instructions were segmented by the steps in the actual route and labeled with the action taken in each step. This flat formulation reduced the problem to an IE/Segmentation task, to which we applied Conditional Random Fields. We compared the performance of CRFs with a set of hand-written rules. The result showed that CRFs perform better with a success rate. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.