Báo cáo khoa học: "Word Sense Disambiguation Using Label Propagation Based Semi-Supervised Learning"

Shortage of manually sense-tagged data is an obstacle to supervised word sense disambiguation methods. In this paper we investigate a label propagation based semisupervised learning algorithm for WSD, which combines labeled and unlabeled data in learning process to fully realize a global consistency assumption: similar examples should have similar labels. Our experimental results on benchmark corpora indicate that it consistently outperforms SVM when only very few labeled examples are available, and its performance is also better than monolingual bootstrapping, and comparable to bilingual bootstrapping. .

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.