Báo cáo khoa học: "Jointly Labeling Multiple Sequences: A Factorial HMM Approach"

We present new statistical models for jointly labeling multiple sequences and apply them to the combined task of partof-speech tagging and noun phrase chunking. The model is based on the Factorial Hidden Markov Model (FHMM) with distributed hidden states representing partof-speech and noun phrase sequences. We demonstrate that this joint labeling approach, by enabling information sharing between tagging/chunking subtasks, outperforms the traditional method of tagging and chunking in succession. Further, we extend this into a novel model, Switching FHMM, to allow for explicit modeling of cross-sequence dependencies based on linguistic knowledge. We report tagging/chunking accuracies for varying dataset sizes.

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.