We introduce a new method for disambiguating word senses that exploits a nonlinear Kernel Principal Component Analysis (KPCA) technique to achieve accuracy superior to the best published individual models. We present empirical results demonstrating significantly better accuracy compared to the state-of-the-art achieved by either na¨ve Bayes ı or maximum entropy models, on Senseval-2 data. We also contrast against another type of kernel method, the support vector machine (SVM) model, and show that our KPCA-based model outperforms the SVM-based model. .