Báo cáo khoa học: "Beyond N in N-gram Tagging"

The Hidden Markov Model (HMM) for part-of-speech (POS) tagging is typically based on tag trigrams. As such it models local context but not global context, leaving long-distance syntactic relations unrepresented. Using n-gram models for n 3 in order to incorporate global context is problematic as the tag sequences corresponding to higher order models will become increasingly rare in training data, leading to incorrect estimations of their probabilities. The trigram HMM can be extended with global contextual information, without making the model infeasible, by incorporating the context separately from the POS tags. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.