Báo cáo khoa học: "Closing the Gap: Learning-Based Information Extraction Rivaling Knowledge-Engineering Methods"

In this paper, we present a learning approach to the scenario template task of information extraction, where information filling one template could come from multiple sentences. When tested on the MUC4 task, our learning approach achieves accuracy competitive to the best of the MUC-4 systems, which were all built with manually engineered rules. Our analysis reveals that our use of full parsing and state-of-the-art learning algorithms have contributed to the good performance. To our knowledge, this is the first research to have demonstrated that a learning approach to the full-scale information extraction task could achieve performance rivaling that of.

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.