Báo cáo khoa học: "Query-Relevant Summarization using FAQs"

This paper introduces a statistical model for query-relevant summarization: succinctly characterizing the relevance of a document to a query. Learning parameter values for the proposed model requires a large collection of summarized documents, which we do not have, but as a proxy, we use a collection of FAQ (frequently-asked question) documents. Taking a learning approach enables a principled, quantitative evaluation of the proposed system, and the results of some initial experiments—on a collection of Usenet FAQs and on a FAQ-like set of customer-submitted questions to several large retail companies—suggest the plausibility of learning for summarization. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.