Báo cáo khoa học: "A Multi-Neuro Tagger Using Variable Lengths of Contexts"

This paper presents a multi-neuro tagger that uses variable lengths of contexts and weighted inputs (with information gains) for part of speech tagging. Computer experiments show that it has a correct rate of over 94% for tagging ambiguous words when a small Thai corpus with 22,311 ambiguous words is used for training. This result is better than any of the results obtained using the single-neuro taggers with fixed but different lengths of contexts, which indicates that the multi-neuro tagger can dynamically find a suitable length of contexts in tagging. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.