This paper presents a multi-neuro tagger that uses variable lengths of contexts and weighted inputs (with information gains) for part of speech tagging. Computer experiments show that it has a correct rate of over 94% for tagging ambiguous words when a small Thai corpus with 22,311 ambiguous words is used for training. This result is better than any of the results obtained using the single-neuro taggers with fixed but different lengths of contexts, which indicates that the multi-neuro tagger can dynamically find a suitable length of contexts in tagging. .