Báo cáo khoa học: "Improving Statistical Natural Language Translation with Categories and Rules"

This paper describes an all level approach on statistical natural language translation (SNLT). W i t h o u t any predefined knowledge the system learns a statistical translation lexicon (STL), word classes (WCs) and translation rules (TRs) from a parallel corpus thereby producing a generalized form of a word alignment (WA). The translation process itself is realized as a beam search. In our method example-based techniques enter an overall statistical approach leading to about 50 percent correctly translated sentences applied to the very difficult EnglishGerman V E R B M O B I L spontaneous speech corpus. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.