We present an architecture and an on-line learning algorithm and apply it to the problem of part-ofspeech tagging. The architecture presented, SNOW, is a network of linear separators in the feature space, utilizing the Winnow update algorithm. Multiplicative weight-update algorithms such as Winnow have been shown to have exceptionally good behavior when applied to very high dimensional problems, and especially when the target concepts depend on only a small subset of the features in the feature space. .