Báo cáo khoa học: "Dialogue Act Tagging with Transformation-Based Learning"

For the task of recognizing dialogue acts, we are applying the Transformation-Based Learning (TBL) machine learning algorithm. To circumvent a sparse data problem, we extract values of well-motivated features of utterances, such as speaker direction, punctuation marks, and a new feature, called dialogue act cues, which we find to be more effective than cue phrases and word n-grams in practice. We present strategies for constructing a set of dialogue act cues automatically by minimizing the entropy of the distribution of dialogue acts in a training corpus, filtering out irrelevant dialogue act cues, and clustering semantically-related words. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.