Báo cáo khoa học: "Active Learning for Statistical Natural Language Parsing"

It is necessary to have a (large) annotated corpus to build a statistical parser. Acquisition of such a corpus is costly and time-consuming. This paper presents a method to reduce this demand using active learning, which selects what samples to annotate, instead of annotating blindly the whole training corpus. Sample selection for annotation is based upon “representativeness” and “usefulness”. A model-based distance is proposed to measure the difference of two sentences and their most likely parse trees. Based on this distance, the active learning process analyzes the sample distribution by clustering and calculates the density of each sample to.

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.