Báo cáo khoa học: "A Generative Constituent-Context Model for Improved Grammar Induction"

We present a generative distributional model for the unsupervised induction of natural language syntax which explicitly models constituent yields and contexts. Parameter search with EM produces higher quality analyses than previously exhibited by unsupervised systems, giving the best published unsupervised parsing results on the ATIS corpus. Experiments on Penn treebank sentences of comparable length show an even higher F1 of 71% on nontrivial brackets. We compare distributionally induced and actual part-of-speech tags as input data, and examine extensions to the basic model. We discuss errors made by the system, compare the system to previous models, and discuss upper bounds,.

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.