Báo cáo khoa học: "GPSM: A GENERALIZED PROBABILISTIC SEMANTIC MODEL FOR AMBIGUITY RESOLUTION"

In natural language processing, ambiguity resolution is a central issue, and can be regarded as a preference assignment problem. In this paper, a Generalized Probabilistic Semantic Model (GPSM) is proposed for preference computation. An effective semantic tagging procedure is proposed for tagging semantic features. A semantic score function is derived based on a score function, which integrates lexical, syntactic and semantic preference under a uniform formulation. The semantic score measure shows substantial improvement in structural disambiguation over a syntax-based approach. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.