This paper presents a method for inducing the parts of speech of a language and partof-speech labels for individual words from a large text corpus. Vector representations for the part-of-speech of a word are formed from entries of its near lexical neighbors. A dimensionality reduction creates a space representing the syntactic categories of unambiguous words. A neural net trained on these spatial representations classifies individual contexts of occurrence of ambiguous words. The method classifies both ambiguous and unambiguous words correctly with high accuracy. .