Báo cáo khoa học: "Two-Level, Many-Paths Generation"

Large-scale natural language generation requires the integration of vast mounts of knowledge: lexical, grammatical, and conceptual. A robust generator must be able to operate well even when pieces of knowledge axe missing. It must also be robust against incomplete or inaccurate inputs. To attack these problems, we have built a hybrid generator, in which gaps in symbolic knowledge are filled by statistical methods. We describe algorithms and show experimental results.

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.