Syntactic natural language parsers have shown themselves to be inadequate for processing highly-ambiguous large-vocabulary text, as is evidenced by their poor performance on domains like the Wall Street Journal, and by the movement away from parsing-based approaches to textprocessing in general. In this paper, I describe SPATTER, a statistical parser based on decision-tree learning techniques which constructs a complete parse for every sentence and achieves accuracy rates far better than any published result. .