Báo cáo khoa học: "Reconstructing false start errors in spontaneous speech text"

This paper presents a conditional random field-based approach for identifying speaker-produced disfluencies (. if and where they occur) in spontaneous speech transcripts. We emphasize false start regions, which are often missed in current disfluency identification approaches as they lack lexical or structural similarity to the speech immediately following. We find that combining lexical, syntactic, and language model-related features with the output of a state-of-the-art disfluency identification system improves overall word-level identification of these and other errors. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.