This paper examines unsupervised approaches to part-of-speech (POS) tagging for morphologically-rich, resource-scarce languages, with an emphasis on Goldwater and Griffiths’s (2007) fully-Bayesian approach originally developed for English POS tagging. We argue that existing unsupervised POS taggers unrealistically assume as input a perfect POS lexicon, and consequently, we propose a weakly supervised fully-Bayesian approach to POS tagging, which relaxes the unrealistic assumption by automatically acquiring the lexicon from a small amount of POS-tagged data