Báo cáo khoa học: "A Generalized Vector Space Model for Text Retrieval Based on Semantic Relatedness"

Generalized Vector Space Models (GVSM) extend the standard Vector Space Model (VSM) by embedding additional types of information, besides terms, in the representation of documents. An interesting type of information that can be used in such models is semantic information from word thesauri like WordNet. Previous attempts to construct GVSM reported contradicting results. The most challenging problem is to incorporate the semantic information in a theoretically sound and rigorous manner and to modify the standard interpretation of the VSM. In this paper we present a new GVSM model that exploits WordNet’s semantic information. The model is based on a.

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.