Báo cáo khoa học: "User Edits Classification Using Document Revision Histories"

Document revision histories are a useful and abundant source of data for natural language processing, but selecting relevant data for the task at hand is not trivial. In this paper we introduce a scalable approach for automatically distinguishing between factual and fluency edits in document revision histories. The approach is based on supervised machine learning using language model probabilities, string similarity measured over different representations of user edits, comparison of part-of-speech tags and named entities, and a set of adaptive features extracted from large amounts of unlabeled user edits. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.