We present the PONG method to compute selectional preferences using part-of-speech (POS) N-grams. From a corpus labeled with grammatical dependencies, PONG learns the distribution of word relations for each POS N-gram. From the much larger but unlabeled Google N-grams corpus, PONG learns the distribution of POS N-grams for a given pair of words. We derive the probability that one word has a given grammatical relation to the other. PONG estimates this probability by combining both distributions, whether or not either word occurs in the labeled corpus. .