Báo cáo khoa học: "Perplexity Minimization for Translation Model Domain Adaptation in Statistical Machine Translation"

We investigate the problem of domain adaptation for parallel data in Statistical Machine Translation (SMT). While techniques for domain adaptation of monolingual data can be borrowed for parallel data, we explore conceptual differences between translation model and language model domain adaptation and their effect on performance, such as the fact that translation models typically consist of several features that have different characteristics and can be optimized separately. We also explore adapting multiple (4–10) data sets with no a priori distinction between in-domain and out-of-domain data except for an in-domain development set. .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.