We propose a novel method for learning morphological paradigms that are structured within a hierarchy. The hierarchical structuring of paradigms groups morphologically similar words close to each other in a tree structure. This allows detecting morphological similarities easily leading to improved morphological segmentation. Our evaluation using (Kurimo et al., 2011a; Kurimo et al., 2011b) dataset shows that our method performs competitively when compared with current state-ofart systems.