Báo cáo khoa học: "Probabilistic Hierarchical Clustering of Morphological Paradigms"

We propose a novel method for learning morphological paradigms that are structured within a hierarchy. The hierarchical structuring of paradigms groups morphologically similar words close to each other in a tree structure. This allows detecting morphological similarities easily leading to improved morphological segmentation. Our evaluation using (Kurimo et al., 2011a; Kurimo et al., 2011b) dataset shows that our method performs competitively when compared with current state-ofart systems.

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.