Báo cáo khoa học: "Learning Features that Predict Cue Usage"

Our goal is to identify the features that predict the occurrence and placement of discourse cues in tutorial explanations in order to aid in the automatic generation of explanations. Previous attempts to devise rules for text generation were based on intuition or small numbers of constructed examples. We apply a machine learning program, , to induce decision trees for cue occurrence and placement from a corpus of data coded for a variety of features previously thought to affect cue usage. Our experiments enable us to identify the features with most predictive power, and show that machine learning can be.

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.