Báo cáo khoa học: "Mistake-Driven Mixture of Hierarchical Tag Context Trees "

This paper proposes a mistake-driven mixture method for learning a tag model. The method iteratively performs two procedures: 1. constructing a tag model based on the current data distribution and 2. updating the distribution by focusing on data that are not well predicted by the constructed model. The final tag model is constructed by mixing all the models according to their performance. 1

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.