Báo cáo khoa học: "A Word-to-Word Model of Translational Equivalence"

Many multilingual NLP applications need to translate words between different languages, but cannot afford the computational expense of inducing or applying a full translation model. For these applications, we have designed a fast algorithm for estimating a partial translation model, which accounts for translational equivalence only at the word level . The model's precision/recall trade-off can be directly controlled via one threshold parameter. This feature makes the model more suitable for applications that are not fully statistical. The model's hidden parameters can be easily conditioned on information extrinsic to the model, providing an easy way to integrate pre-existing.

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.