Wilson disease (WD), an inherited disorder affecting copper metabolism, is characterized by hepatic cirrhosis and neuronal degeneration, which result from toxic levels of copper that accumulate in the liver and brain, respectively. We reported previously that the promoter of the WD gene contains four metal response elements (MREs). Among the four MREs, MREa plays the most important role in the transcriptional activation of the WD promoter. Electrophoretic mobility shift assays (EMSAs) using synthetic MREa and an oligonucleotide containing the binding site for transcription factor Sp1 revealed the presence of nuclear factors that bind specifically to MREa. Two MREa-binding.