Basic principles underlying the transactions of financial markets are tied to probability and statistics. Accordingly it is natural that books devoted to mathematical finance are dominated by stochastic methods. Only in recent years, spurred by the enormous economical success of financial derivatives, a need for sophisticated computational technology has developed. For example, to price an American put, quantitative analysts have asked for the numerical solution of a free-boundary partial differential equation. Fast and accurate numerical algorithms have become essential tools to price financial derivatives and to manage portfolio risks. The required methods aggregate to the new field of Computational Finance. This discipline still has an aura of mysteriousness; the first.