Distributed MIMO - Patrick Maechler

Outline: 1. Motivation: Collaboration scheme achieving optimal capacity scaling 2. Distributed MIMO 3. Synchronization errors | Distributed MIMO Patrick Maechler April 2, 2008 Outline Motivation: Collaboration scheme achieving optimal capacity scaling Distributed MIMO Synchronization errors Implementation Conclusion/Outlook Throughput Scaling Scenario: Dense network Fixed area with n randomly distributed nodes Each node communicates with random destination node at rate R(n). Total throughput T(n) = nR(n) TDMA/FDMA/CDMA: T(n) = O(1) Multi-hop: T(n) = O( ) P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 388–404, Mar. 2000. Hierarchical Cooperation: T(n) = O(n) Ayfer Özgür, Olivier Lévêque and David N. C. Tse, ”Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks”, IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3549-3572, Oct. 2007 Cooperation Scheme All nodes are divided into clusters of equal size Phase 1: Information distribution Each node splits its bits among all nodes in its cluster Cooperation Scheme Phase 2: Distributed MIMO transmissions All bits from source s to destination d are sent simultaneously by all nodes in the cluster of the source node s Cooperation Scheme Phase 3: Cooperative decoding The received signal in all nodes of the destination cluster is quantized and transmitted to destination d. Node d performs MIMO decoding. Hierarchical Cooperation The more hierarchical levels of this scheme are applied, the nearer one can get to a troughput linear in n. Outline Motivation: Collaboration scheme achieving optimal capacity scaling Distributed MIMO Synchronization errors Implementation Conclusion/Outlook Distributed MIMO Independent nodes collaborate to operate as distributed multiple-input multiple-output system Simple examples: Receive MRC (1xNr): Transmit MRC (Ntx1, channel knowledge at transmitter) Alamouti (2xNr): STBC over 2 timeslots Diversity gain but no multiplexing gain Alamouti, ., "A simple transmit diversity technique for wireless communications ," Selected Areas in Communications, | Distributed MIMO Patrick Maechler April 2, 2008 Outline Motivation: Collaboration scheme achieving optimal capacity scaling Distributed MIMO Synchronization errors Implementation Conclusion/Outlook Throughput Scaling Scenario: Dense network Fixed area with n randomly distributed nodes Each node communicates with random destination node at rate R(n). Total throughput T(n) = nR(n) TDMA/FDMA/CDMA: T(n) = O(1) Multi-hop: T(n) = O( ) P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 388–404, Mar. 2000. Hierarchical Cooperation: T(n) = O(n) Ayfer Özgür, Olivier Lévêque and David N. C. Tse, ”Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks”, IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3549-3572, Oct. 2007 Cooperation Scheme All nodes are divided into clusters of equal size Phase 1: Information distribution Each node splits its bits among all nodes in its cluster Cooperation Scheme Phase 2: Distributed .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.