Tập hợp các đề thi về phương trình chứa căn thức | Chuyên đề phương trì nh – Bất phương trì nh Phương trì nh chứa ẩn ở căn thức 2 Ví dụ : Giải phương trì nh: 1 x x2 x 1 x 3 Giải: ĐK 0 x 1. Để giải phương trì nh này thì rõ ràng ta phải tìm cách loại bỏ căn thức. Có những cách nào để loại bỏ căn thức ? Điều đầu tiên chúng ta nghĩ tới đó là lũy thừa hai vế. Vì hai vế của phương trì nh đã cho luôn không âm nên bì nh phương hai vế ta thu được phương trì nh tương đương. 2 2 2 2 4 2 4 2 2 (1) 1 x x x 1 x 1 x x (x x ) 1 2 x x 3 3 9 2(x x2 ) x x2 0 x x2 2 x x2 3 0 2 x x 0 x 0;x 1 . 2 3 x x VN0 4 Kết hợp với điều kiện ta có nghiệm của phương trì nh: x 0;x 1. Qua lời giải trên ta thấy được x x2 sẽ biểu diến được qua x 1 x nhờ vào đẳng 2 thức x 1 x 1 2 x x2 (*) .Cụ thể nếu ta đặt t x 1 x thì t2 1 x x2 và khi đó phương trì nh đã cho trở thành phương trì nh bậc hai với ẩn là 2 t2 1 t: 1 t t2 3t 2 0 t 1;t 2 . 3 x 1 x 1 2 x x2 0 Vậy ta có: x 0;x 1. x 1 x 2 VN0 (VT 2) Việc thay thế biểu thức x 1 x bằng một ẩn mới là t (mà ta gọi là ẩn phụ) là một suy nghĩ hoàn toàn phù hợp với tự nhiên ( chúng ta nhớ lại là chúng ta đang tì m cách làm mất căn thức !). Cách làm như thế này ta thường gặp trong cuộc sống hằng ngày của chúng ta, chẳng hạn khi chúng ta đi xa không tiện cho việc mang theo tiền mặt ta có thể đổi qua đô la, hay thẻ ATM, séc, Cũng như việc chuyển đổi tiền ở trên, để làm mất căn thức ta tìm cách đặt một biểu thức chứa căn thức nào đó bằng một biểu thức ẩn mới sao cho phương trì nh ẩn mới có hình thức kết cấu đơn giản hơn phương trì nh ban đầu. Đặt biểu thức chứa căn nào bằng biểu thức ẩn mới như thế nào là vấn đề quan trọng nhất, bước làm này quyết định đến có được lời giải hay không và lời giải đó tốt hay dở. Để chọn được được cách đặt ẩn phụ thích hợp thì ta cần phải tìm được mối quan hệ của các biểu thức tham gia trong phương trì nh như ở cách .