Bài báo này nghiên cứu tính ổn định của một mô hình thị trường lao động trong hệ động lực rời rạc. Mô hình được đặc trưng bởi một ánh xạ một chiều với điểm bất động duy nhất. Chúng tôi chứng minh sự tồn tại của các nghiệm tuần hoàn, không tuần hoàn và quỹ đạo homoclinic. Các định lí Sarkovskii, phân nhánh chu kỳ bội và chuỗi Markov được dùng để chỉ ra sự tồn tại hiện tượng nhiễu loạn trong mô hình