Tài liệu tham khảo về ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2013 – 2014 - SỞ GIÁO DỤC VÀ ĐÀO TẠO LÂM ĐỒNG. Đây là đề thi chính thức của Sở giáo dục và đào tạo trong kỳ thi tuyển sinh vào lớp 10 THPT. Thời gian làm bài là 120 phút không kể thời gian giao đề. . | SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN LÂM ĐỒNG Khóa ngày 21/6/2013 ĐỀ THI CHÍNH THỨC MÔN THI : TOÁN ( Đề thi gồmcó 01 trang) Thời gian làm bài : 150 phút Câu 1:(2,0đ) Rút gọn : Câu 2:(2,0đ) Cho là góc nhọn. Chứng minh : Câu 3:(2,0đ) Giải hệ phương trình : Câu 4:(2,0đ) Giải phương trình : Câu 5:(1,5đ) Cho tam giác ABC, lấy điểm M nằm giữa B và C, lấy điểm N nằm giữa A và M. Biết diện tích tam giác ABM và diện tích tam giác NBC đều bằng 10m2 , diện tích tam giác ANC là 9m2. Tính diện tích tam giác ABC. Câu 6:(1,5đ) Trên mặt phẳng toạ độ Oxy ( đơn vị trên hai trục toạ độ bằng nhau) cho A(6;0) , B(3;0) , C(0;- 4) , D(0;-8) . Đường thẳng AC cắt đường thẳng BD tại M. Tính độ dài đoạn thẳng OM. Câu 7:(1,5đ) Cho phương trình bậc hai : (x là ẩn số, m là tham số). Tìm giá trị của m để phương trình có hai nghiệm phân biệt thoả mãn hệ thức Câu 8:(1,5đ) Cho tam giác ABC cân tại A nội tiếp đường tròn (O). Trên tia đối của tia AC lấy điểm D và trên tia đối của tia BA lấy điểm E sao cho AD = BE . Chứng minh tứ giác DAOE nội tiếp . Câu 9:(1,5đ) Tìm giá trị nhỏ nhất của Câu 10:(1,5đ) Tìm số tự nhiên n để n + 4 và n + 11 đều là số chính phương. Câu 11:(1,5đ) Cho tam giác ABC cân tại A, lấy điểm D nằm giữa B và C, lấy điểm E nằm giữa A và B , lấy điểm F nằm giữa A và C sao cho . Chứng minh : Câu 12:(1,5đ) Cho đường tròn tâm O đường kính AB, M là một điểm trên đường tròn (M khác A và B), kẻ MH vuông góc với AB tại H. Đường tròn tâm M bán kính MH cắt (O) tại C và D. Đoạn thẳng CD cắt MH tại I. Chứng minh : I là trung điểm của MH . -------Hết ------ Chứng minh MC2 = = = = MH2 => MH = 2MI => đpcm