ĐỀ THI TUYỂN SINH LỚP 10 THPT CHUYÊN Amsterdam NĂM HỌC 2013- 2014 Môn thi: TOÁN - SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI

Tài liệu tham khảo về ĐỀ THI TUYỂN SINH LỚP 10 THPT CHUYÊN Amsterdam NĂM HỌC 2013- 2014 Môn thi: TOÁN - SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI. Đây là đề thi chính thức của Sở giáo dục và đào tạo trong kỳ thi tuyển sinh vào lớp 10 THPT. Thời gian làm bài là 120 phút không kể thời gian giao đề. . | SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2013- 2014 Thời gian làm bài: 120 phút chuyên toán Hà Nội - Amsterdam, chuyên Nguyễn Huệ Hà Nội Đề thi gồm : 01 trang Bài 1: 1) Tìm các số tự nhiên n để 72013 + 3n có chữ số hàng đơn vị là 8. 2) Cho a, b là các số tự nhiên lớn hơn 2 và p là số tự nhiên thỏa mãn . Chứng minh p là hợp số. Bài 2: 1) Tìm các số nguyên x,y thỏa mãn x2 − 3y2 + 2xy − 2x + 6y – 8 = 0. 2) Giải hệ phương trình Bài 3: Cho a, b là các số thực thỏa mãn a + b + 4ab = 4a2 + 4b2. Tìm giá trị lớn nhất của biểu thức: A = 20(a3 + b3) − 6(a2 + b2) + 2013. Bài 4: Cho tam giác ABC không phải là tam giác cân. Đường tròn (O) tiếp xúc vói BC, AC, AB lần lượt tại M, N, P. Đường thẳng NP cắt BO, CO lần lượt tại E và F. 1) Chứng minh rằng và bằng nhau hoặc bù nhau. 2) Bốn điểm B, C, E, F thuộc 1 đường tròn. 3) Gọi K là tâm đường tròn ngoại tiếp OEF. Chứng minh O, M, K thẳng hàng. Bài 5: Trong mặt phẳng cho 6 điểm A1,A2,.,A6 trong đó không có 3 điểm nào thẳng hàng và trong 3 điểm luôn có 2 điểm có khoảng cách nhỏ hơn 671 .Chứng minh rằng trong 6 điểm đã cho luôn tồn tại 3 điểm là 3 đỉnh của 1 tam giác có chu vi nhỏ hơn 2013.

Bấm vào đây để xem trước nội dung
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.